
LLNL-CONF-682249

Best Practices for Scalable
Power Measurement and Control

S. Walker, M. Mcfadden

February 8, 2016

IEEE Workshop HPPAC'16
Chicago, IL, United States
May 23, 2016 through May 27, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Best Practices for Scalable Power Measurement and
Control

Scott Walker, Student Member, IEEE, and Marty McFadden
Lawrence Livermore National Lab

Abstract—There are thousands of specialized registers on
modern processors which provide useful features such as power
budgeting, thermal monitoring, and performance counting. These
registers fall into two categories, model specific registers (MSRs)
and configuration space registers (CSRs). Many of these registers,
such as those supported by PAPI, help the high-performance
computing (HPC) community analyze their program in order
to maximize performance and use resources more efficiently.
However, there are many MSRs and CSRs which are not
supported by existing performance tools. The MSR kernel module
provides access to all MSRs, but requires the user to be
root. Users will typically want to access a handful of MSRs
sequentially, but we found that the existing MSR module has
far too much overhead. Just like MSRs, users need elevated
privileges to access CSRs with utilities such as lspci. Simply
allowing users to access all of the registers is out of the question
because of the security risks involved. Furthermore, using these
registers requires detailed knowledge of the architectural changes
in addition to the manufacturer’s proprietary ways of encoding
the data.

In this paper, we will describe a group of utilities developed at
Lawrence Livermore National Laboratory to address these prob-
lems. Our Libmsr API solves the usability issues by providing
a simplified interface to common tasks. The companion kernel
module, MSR-SAFE, allows whitelisting MSRs for userspace
access, plus provides an optimized way to access MSRs in batches.
Our CSR-SAFE kernel module is a first of its kind utility to
whitelist sections of the PCI Express configuration space, where
CSRs reside, for userspace access. We demonstrate the abilities
Libmsr and MSR-SAFE by using the utilities to set various
power limits on the NAS parallel benchmark MG. Experiments
analyzing our optimizations show a maximum speedup of 26X
for certain MSRs, and about 16X on average for sufficiently
large batches versus the stock MSR kernel module. Our utilities
currently support most modern Intel processors.

I. INTRODUCTION

There are thousands of specialized registers on modern pro-
cessors which are useful for the high-performance computing
(HPC) community. These registers can be used for tasks such
as power and performance analysis, which help HPC develop-
ers tailor their code to maximize performance and efficiently
utilize resources[8][1]. There are two main classifications:
Model Specific Registers (MSRs) and Configuration Space
Registers (CSRs). Existing utilities such as PAPI provide an
interface to the performance counter MSRs [13], however, the
majority of MSRs and all CSRs are not supported by existing
tools such as PAPI.

Because of security risks and usability issues, having access
to all MSRs and CSRs can currently only be accomplished
by system administrators with detailed knowledge of Intel
processors. Simply changing the permissions on the existing

register access utilities is also out of the question, since many
MSRs present security risks such as denial of service or
privilege escalation. Furthermore, accessing MSRs with the
existing module has far too much overhead for many use cases.
This is mainly due to the fact that MSRs are accessed one
at a time via pread and pwrite calls. Unlike MSRs, Config-
uration Space Registers have no general access mechanism.
CSRs for specific devices are accessed transparently through
device drivers or through utilities such as sysfs and lspci.
Another factor limiting the usefulness of MSRs and CSRs
is the architectural knowledge required to use them correctly.
The directions for using each MSR are embedded in Intel
documentation spanning thousands of pages [12][10][9][11].
To make matters worse, MSRs and CSRs can change between
architectures, making portability a concern.

In this paper we will provide an overview of a group of
utilities developed at Lawrence Livermore National Lab to
solve the current problems with accessing MSRs and CSRs.
Our kernel modules, MSR-SAFE and CSR-SAFE, provide
userspace access to MSRs and CSRs respectively. In addi-
tion, we provide a mechanism for administrators to supply
a whitelist of registers, thus mitigating the security risks.
We also provide an optimized method for accessing a batch
of MSRs using an ioctl call. Our Libmsr API solves the
usability problems by dynamically detecting the architecture
and available registers, plus it handles encoding the data
properly. Furthermore, common functions such as getting
power readings and setting power limits can be done with
a few simple Libmsr function calls. Our utilities currently
support Intel processors, but we hope to expand the supported
hardware in the future.

This paper is organized as follows. Section II will cover
how we enable safe userspace access of MSRs and CSRs
using a whitelist. Section III will discuss the MSR-SAFE and
CSR-SAFE kernel modules and their performance. Section
IV will present the various capabilities of the Libmsr API
and demonstrate some of the power management functionality.
Section V will discuss related work and section VI concludes
the paper.

II. WHITELISTING REGISTERS

The existing MSR kernel module provides an all or nothing
approach to access MSRs. MSR accessibility is severely
limited in userspace since many have security risks such
as denial of service. For example, there are two registers:
APERF and MPERF that are responsible for tasks such as



timekeeping and calculating effective clock frequency. We
were able to take down our test system by writing these
MSRs at carefully selected times. The Intel documentation
states that the processor must receive the wrmsr instructions
for APERF and MPERF registers sequentially but does not
give any indication why. With the existing Intel kernel module
this would not even be possible due to the overhead. To
provide a way for users to access registers on shared clusters
without creating security risks, our kernel modules MSR-
SAFE, and CSR-SAFE use a whitelist (see figures 1 and 6).
This allows system administrators to select a list of MSRs
users are allowed to access at the granularity of individual bits
if necessary. The overhead of the whitelisting was measured
at around 20-40ns per lookup, which is negligible compared
to the latency of a single MSR instruction.

The CSR whitelist is slightly more complex because CSRs
are frequently duplicated for different PCIe devices. For ex-
ample, the Integrated Memory Controller (iMC) performance
counters are duplicated in a different 4KB configuration
space for each memory channel [10][12]. Therefore, the CSR
whitelist provides a method of inheritance so that changes to
duplicated whitelist entries must only be made in one place
(see figure 2). The whitelisting overhead has slightly more
impact on CSRs for small batch sizes, but at a certain batch
size a performance limit is hit, around 4 million operations
per second (see figure 5). We suspect that this performance
bottleneck is at a part of te processor called the UBox, which
services all CSR requests [10]. For both whitelists we supply
only a writemask. Users are only allowed to read registers that
have a writemask, even if it is null.

III. KERNEL MODIFICATIONS

Optimizations– The existing kernel module allows users to
read or write an MSR using pread or pwrite calls. Once this
operation is completed, the calling process can continue and
access the next MSR. This mechanism works fine when we
are, for example, reading a socket-level MSR such as RAPL
registers. However, there are many MSRs at the hardware
thread level, such as the performance counters. MSR users
will often be utilizing multiple MSRs in rapid succession, for
example getting the value of a counter off of every logical
thread of a node. We tested reading one MSR using the
traditional module and found that polling at 250ms used all
of the resources of that core. To make matters even worse,
we discovered that accessing an MSR on another socket has
more than five times the overhead of accessing an MSR on
the current hardware thread. Accessing an MSR on the same
socket but on a different core has a similar increase in overhead
(see figures 3 and 4). We were able to optimize MSR accesses
by providing an ioctl system call in MSR-SAFE that allows
a batch of registers to be specified for increased throughput
(see figure 8).

MSR-SAFE Performance– Our optimizations indicated
considerable performance increases over the traditional
method of accessing MSRs. We tested multiple types of MSR
accesses because we noticed high variability depending on the

location of the register. We split the types of accesses into four
domains listed below from fastest to slowest:

On Thread
Off Thread On Core
Off Thread On Socket
Off Socket

We tested every different batch size in increments of powers
of two, up to 256. Overall, our MSR-SAFE ioctl operation is
significantly faster than the traditional method of accessing
MSRs as soon as the batch contains four or more operations.
Even with batch sizes of two, our ioctl outperforms pread
and pwrite for nearly every situation. Besides the fact that
our ioctl call was faster overall, there are a couple other
trends within our experiments. First, the pread and pwrite
commands have a constant rate of execution. Second, our
ioctl command has diminishing returns after a certain batch
size depending on where the register is located. We suspect
that this is because we are hitting a bandwidth limit on the
processors. For certain tests such as off thread on socket, we
noticed a large variability between MSR operation speeds. To
compensate for this, our tests execute a batch one million
times. In addition, we executed the program containing the
test at least 20 separate times and took the average across all
of these parameters. The tests were executed on a 2 socket
18 core Haswell node. Some of the tests were repeated on
the Catalyst cluster at Lawrence Livermore National Lab, an
Ivy Bridge system. Those results are not shown here because
of their similarity to our Haswell test. Furthermore, due to
problems with the job scheduler, we were unable to enable
hyperthreading and test the “off thread on core" category.

Configuration Space Registers– Using MSR-SAFE as a
guideline, a CSR-SAFE kernel module was devised. CSRs are
located in PCIe configuration space (see figure 7), and each
socket has its own set of CSRs. The Intel documentation lists
bus 0 as the location of ‘core’ CSRs and bus 1 as the ‘uncore’
[10]. These are not actual bus numbers, they are indicators
of “Intel’s bus 0" and “Intel’s bus 1". When the CSR-
SAFE module is loaded, it discovers the actual bus numbers
associated with the Intel hardware. Therefore, users need only
utilize the bus, device, function, and offset (CSR number) as
listed in the Intel Documentation for the whitelist and module
calls. There is a 4KB configuration space for each PCIe bus,
device, and function. Linux provides a way to access PCIe
configuration space for a particular bus, device, and function
in kernel space. First a pci_dev struct is populated, then one
can use the function pointers contained within that struct to
read or write the configuration space of the struct’s bus, device,
and function. The pci_dev struct is very large, and dealing with
one for every bus, device, and function in our whitelist was
not efficient. We opted to memory map the PCIe configuration
space for each whitelisted bus, device, and function so CSR-
SAFE would have a smaller memory footprint. CSR-SAFE
uses an ioremap for every distinct bus, device, and function
in the whitelist when the module is loaded. The ioremap call
returns an IO pointer which can then be used with the ioread32



Fig. 1: The MSR-SAFE whitelist format. The gray fields are
reserved bits and the blue fields are bits designated as read
only by the whitelist. Users may only write bits designated in
the writemask (white), but they may read all bits as long as a
writemask exists.

and iowrite32 functions. CSR-SAFE keeps track of these IO
pointers within the whitelist data structure for fast access. Our
initial observations indicated that our memory mapped CSR
accesses were faster than using the pci_dev functions. We
hope to examine this in more detail in future work. Since
there are so many configuration spaces which reuse the CSR
numbers as the offset, access with a pread or pwrite would

Fig. 2: The CSR whitelist has additional complexity. The bus,
device, function, and offset are encoded into the lower 32 bits
of the CSR field. The upper 32 bits encode a previously entered
CSR, so that writemasks can be inherited for duplicated CSRs.

not be applicable for a module which accesses multiple PCIe
devices. Thus our CSR-SAFE kernel module only makes use
of a batch via ioctl, where each operation reports the CSR
offset, bus, device, function, and socket to the module. The
CSRs performance is more consistent than MSRs once we
reach the bandwidth limit of CSR accesses, which appears
to be about 4 million per second. We attribute this limit to
the UBox hardware, which services all CSR accesses for Intel
devices [9]. Accessing a single CSR is far faster than accessing
a single MSR using the traditional pread or pwrite mechanism,
but the CSR batch hits a performance limit far faster than the
MSR batches (see figure 5). Currently, providing raw IO to the
whole configuration space is not supported, mainly because of
the security risks.

IV. USERSPACE

The Batch Interface– Libmsr provides a group of functions
for easily setting up a batch of MSR operations. There are
three stages to set up a batch: user allocation, Libmsr alloca-
tion, and batch loading. In the user allocation stage an array of
pointers is allocated. To prevent data copying, Libmsr keeps
a single copy of the batch MSR data hidden from the user,
which can only be accessed through indirection. In the Libmsr



Fig. 3: Measurement of MSR reads per second comparing pread to the batch interface ioctl on a 2 socket 18 core Haswell
node

Fig. 7: Measurement of the CSR-SAFE operation speed using
ioctl on a 2 socket 12 core Ivy Bridge node

allocation stage, the user instructs Libmsr to allocate space
for the actual MSR data, passing in parameters indicating the
batch they wish to use and the size of the batch. Finally, the
batch loading stage tells Libmsr which MSR(s) the user will

be accessing with that batch, and links the userspace pointers
to the Libmsr data array. After this setup is complete, the user
can obtain the data with simple read and write functions.

For CSRs a separate batch interface is provided. Because of
the additional complexity of CSRs, a convenient load function
is not provided, each operation must be specified. The two
allocation stages are the same, but the load stage requires
additional information to correctly gather the data. In addition
to the CSR number or “offset", users must provide the bus,
device, and function number of the register.

RAPL– For tasks such as reading all energy counters or
setting limits for a socket, we provide a RAPL interface in
Libmsr[11]. By using a struct representing the RAPL power
limit, viewing or setting a limit is as simple as a single
function call per socket. Similarly, obtaining energy readings
only requires calling a function before and after the interval
being measured. Libmsr will detect a single energy counter
wraparound, so the user need only ensure their interval is not
excessively large. Unfortunately we currently do not provide
a universal solution for this as this varies greatly between
processor models. We may investigate a solution to this in



Fig. 4: Measurement of MSR writes per second comparing pwrite to the batch interface ioctl on a 2 socket 18 core Haswell
node

future work. The RAPL interface also contains functions to
print or dump the data it has collected, or access the raw data
for more advanced purposes. To test Libmsr’s implementation
of RAPL, we performed an experiment where we set various
power bounds with RAPL and recorded subsequent behavior
of the NAS parallel benchmark MG (see figure 9). This test
was performed on 52 nodes of the Catalyst cluster at Lawrence
Livermore National Lab. We observed the execution time vary
only slightly with a CPU power cap, which is consistent with
the work of Hackenberg et al. [7]. The execution time varied
greatly with a memory power cap, as one would expect for a
memory bound application like MG [4].

Counters– Libmsr has simplified functions for accessing the
many hardware counters on supported architectures. Some of
these hardware counters are “fixed" meaning they always count
the same event. Other counters require the user to specify what
they want it to count. Currently for the non-fixed counters,
the user must specify the events to be counted, as specified
in the Intel documentation. Unfortunately this highlights a
limitation of the library: there are so many counters and
events that including them all would be a huge undertaking

[11][9][12][10]. Future work may include adding frequently
used events.

Clocks– This section of Libmsr contains simple access
functions for hardware clocks such as the Timestamp Counter.
Because the Timestamp Counter increments at a fixed rate for
every processor, it can be used for high resolution timekeeping
tasks. The APERF and MPERF clock counters can be used to
derive the performance of the processor, where the formula is
PercentInUse = PercentNotIdle * (APERF/MPERF) [11]. We
suggest that these MSRs be whitelisted as read-only because
we were able to create denial of service attacks by writing to
these MSRs frequently with random values.

Turbo– The Libmsr Turbo functions can be used to turn
Intel Turbo Boost on or off. Our experiments and observations
have not indicated a significant difference in power when
turbo is on or off. This is consistent with the observations
of Hackenberg et al. [7].

Misc– The Misc section of Libmsr provides functions for
reading and modifying the MISC_ENABLE register. This
register provides a quick way to toggle features such as Fast
String, Turbo, and Precise Event Based Sampling (PEBS).



Fig. 5: Measurement of the execution time of one million batches comparing pread to the batch interface ioctl on a 2 socket
18 core Haswell node

Core and package C-state residency counters can also be
accessed through functions in this part of the library.

Thermal– The Thermal interface can be used to access the
per-core thermal sensors located on supported architectures. In
addition, the TEMPERATURE_TARGET MSR can be viewed
and modified. Possible applications of this MSR include
thermal throttling to reduce cooling costs.

Integrated Memory Controller– The iMC on Intel proces-
sors contains many CSRs which act as performance counters
for both the iMC and the DRAM [12][10]. Libmsr has simpli-
fied functions for calculating how much memory bandwidth is
used. The memory bandwidth readings are obtained by using
the iMC performance counters to count a certain event, and
multiplying that by a fixed value. Thus, memory bandwidth
is one of Intel’s “derived events", not a direct register value
[9]. Future work will include adding user-friendly functions
for the most commonly used events and derived events.

V. RELATED WORK

We hope that Libmsr, MSR-SAFE, and CSR-SAFE will
catalyze HPC power and performance research. Our utili-
ties will enable researchers to concentrate on higher level

developments on more machines, instead of spending time
learning architectural details and waiting for elevated privi-
leges. Setting a one time power cap with RAPL is not the
best solution for power-aware supercomputing. To meet the
Department of Energy’s requirement of an exascale computer
under 20MW, a combination of over provisioning and dynamic
power management is likely a necessity [2] [6] [5] [8]. A
significant portion of modern power-aware research is focusing
on dynamic power management. Davis et al. developed a
software based utility named Star-Cap to dynamically manage
the power of a cluster [3]. While this utility maintains a low
overhead by using operating system performance counters,
its response time may be as high as 20 seconds. This is
unacceptable for HPC environments, where power spikes
could damage the cluster or the power supply [5]. Star-Cap
also requires power meters attached to the nodes, which we
do not consider scalable. Hackenberg et al. used experiments
to find the accuracy of the Fully Integrated Voltage Regulators
(FIVRs) on Intel Haswell processors and determined them
to have sufficient accuracy. Therefore, we see no reason
for future HPC clusters to spend money on power meters.



Fig. 6: Measurement of the execution time of one million batches comparing pwrite to the batch interface ioctl on a 2 socket
18 core Haswell node

Davis et al. mention that hardware counters have too much
overhead to be viable for capping HPC power [3]. We believe
that our recent optimizations in MSR-SAFE will now make
hardware counters a more appealing candidate for scalable
power management. Related research by Ellsworth et al. uses
Libmsr to dynamically adjust power across an entire cluster
while running various HPC jobs. Their experiments yielded a
14% increase in job throughput by redistributing waste power.
Furthermore, overhead of the dynamic power management
was negligible [5]. Fukazawa et al. used RAPL to place a
power cap on the Magnetohydrodynamic (MHD) simulation
code. They determined that the MHD code has certain sections
where placing a processor power cap does not significantly
effect performance [6]. Our demonstration of Libmsr’s RAPL
functionality on the NAS parallel benchmark MG confirms
that a processor power cap does not significantly impact the
performance of a memory bound application. We also showed
that throttling memory power does have a significant effect
on memory bound application performance as expected. In
addition to power aware research, some recent studies also
consider thermal aware computing [14]. The justification for

this is that cooling costs are nearly half of the expenses for
a data center. Zhao et al. developed a data center scheduler
that was able to reduce cooling costs which utilized inlet
temperature monitors [14]. The thermal MSRs interface in
Libmsr may provide a less expensive, scalable alternative for
thermal aware scheduling. Combs et al. used power meters
attached to nodes to find the power signatures of HPC work-
loads [2]. They were able to identify applications based on
their power signature with 85% accuracy even on different
platforms and configurations. The node level power meter used
in their study had the granularity of 1Hz. The MSR which
contains energy readings of the processor has a granularity
of 1KHz. We believe that this increased granularity would
help improve the accuracy power signatures. We intend to
investigate this in the future. Inadomi et al. developed a power
budgeting algorithm which takes individual processor power
variations into account [8]. They found that their algorithm
scheduled applications that had a 1.8X average speedup when
compared to a power budgeting algorithm which was not
aware of processor power variations. Bailey et al. found that an
optimal power reallocation algorithm combined with carefully



Fig. 8: User programs access MSRs through Libmsr which
then uses the pread and pwrite calls in MSR-SAFE. MSR-
SAFE ensures that the user’s request has been whitelisted,
ANDing off bits that aren’t allowed or returning an error. If
the user’s request passes the whitelist check, then MSR-SAFE
invokes a RDMSR or WRMSR instruction on the specified
processor core and sends the data back to userspace.

Fig. 9: Users access CSRs through Libmsr which uses the
ioctl call in CSR-SAFE. CSR-SAFE checks the user’s request
against its own whitelist. CSR-SAFE has memory mapped the
physical address space for the PCIe configuration space of
whitelisted devices. Memory requests to these locations are
routed to the UBox of the processor.

tuned OpenMP and MPI code can improve HPC algorithm
performance by up to 41.1%.

VI. CONCLUSION AND FUTURE WORK

Model specific registers and PCIe configuration space reg-
isters are useful for various HPC applications but are currently
impractical with existing utilities. Our kernel modules MSR-
SAFE and CSR-SAFE allow userspace access of CSRs and
MSRs on Intel architectures. Our modules also maintain

Fig. 10: An MSR batch requires that the user set up an
array of references that is then directed to the actual data
in Libmsr. This mechanism prevents needless data copying.
After the array of operations reaches MSR-SAFE via ioctl,
each operation is executed sequentially on the processor.

Fig. 11: Results from running the NAS Parallel Benchmark
MG given various RAPL power limits in 5 watt increments.
Since MG is memory bound, the execution speed does not
vary greatly even with an extreme processor power cap. The
execution speed does vary greatly when subjected to a memory
power cap.

security thanks to the whitelist mechanism. Since the existing
MSR kernel module has too much overhead to access large
amounts of registers at high rates, we created an optimized
way to access MSRs in batches with MSR-SAFE. The opti-
mizations in the MSR-SAFE kernel module show a significant
improvement over the existing MSR module, with speedups
as high as 26X. Our Libmsr API solves usability issues
of MSRs by providing a simplified interface for common
tasks such as power management and performance monitoring.
We have demonstrated a use case of Libmsr and MSR-
SAFE by performing an experiment which shows that capping
processor power can save a considerable amount of energy
without significantly reducing performance for memory bound
applications. Our PCIe configuration space module is the first
of its kind to allow reading and writing all PCIe devices’
CSRs in userspace. In the future we plan to add more CSR
support to Libmsr, but this is a large undertaking because there
are far more CSRs than MSRs and they change significantly
between architectures. Although not discussed in detail in this



paper, Libmsr, MSR-SAFE, and CSR-SAFE have applications
besides power-aware computing. Our utilities can also be used
for performance monitoring, thermal monitoring and limiting,
and control of various hardware settings and features. Future
work includes using RAPL to evaluate an application power
signature which can later aid in allocating power accordingly.
Davis et al. believed that accessing hardware energy counters
for this purpose was “more intrusive" than software counters
[3], but we hope that our recent optimizations make the
hardware energy counters a better solution. CSR accesses
reach a bandwidth limit much faster than MSR accesses. We
observed that our CSR operations which use IO remapping are
faster than using the configuration read and write functions in
the linux pci_dev struct. Finding the reason for this is some-
thing we hope to discover in subsequent experiments. Because
processor manufacturers constantly add more registers and
change existing ones, keeping up with these changes is also a
priority. Finally, we hope to expand Libmsr, MSR-SAFE, and
CSR-SAFE to support hardware from other vendors, including
IBM, AMD, and Nvidia.

VII. ACKNOWLEDGEMENTS

We want to thank Dr. Barry Rountree for encouraging this
research and providing suggestions for improvement. This
material is based upon work performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-682249).

REFERENCES

[1] Peter E Bailey, Aniruddha Marathe, David K Lowenthal, Barry Roun-
tree, and Martin Schulz. Finding the limits of power-constrained
application performance. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
page 79. ACM, 2015.

[2] Jacob Combs, Jolie Nazor, Rachelle Thysell, Fabian Santiago, Matthew
Hardwick, Lowell Olson, Suzanne Rivoire, Chung-Hsing Hsu, and
Stephen W Poole. Power signatures of high-performance computing
workloads. In Proceedings of the 2nd International Workshop on Energy
Efficient Supercomputing, pages 70–78. IEEE Press, 2014.

[3] John D Davis, Suzanne Rivoire, and Moises Goldszmidt. Star-cap:
Cluster power management using software-only models. In Parallel
Processing Workshops (ICCPW), 2014 43rd International Conference
on, pages 114–120. IEEE, 2014.

[4] NASA Advanced Supercomputing Division. NAS
Parallel Benchmark Suite Version 3.3.1, 2015.
https://www.nas.nasa.gov/publications/npb.html.

[5] Daniel A Ellsworth, Allen D Malony, Barry Rountree, and Martin
Schulz. Dynamic power sharing for higher job throughput. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 80. ACM, 2015.

[6] Kyoko Fukazawa, Makoto Ueda, Masahiro Aoyagi, Tomonori Tsuhata,
Kenta Yoshida, Aruta Uehara, Masakazu Kuze, Yuichi Inadomi, and Ken
Inoue. Power consumption evaluation of an mhd simulation with cpu
power capping. In Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on, pages 612–617. IEEE,
2014.

[7] Daniel Hackenberg, Robert Schone, Thomas Ilsche, Daniel Molka,
Joseph Schuchart, and Robin Geyer. An energy efficiency feature survey
of the intel haswell processor. In Parallel and Distributed Processing
Symposium Workshop (IPDPSW), 2015 IEEE International, pages 896–
904. IEEE, 2015.

[8] Yuichi Inadomi, Tapasya Patki, Koji Inoue, Mutsumi Aoyagi, Barry
Rountree, Martin Schulz, David Lowenthal, Yasutaka Wada, Keiichiro
Fukazawa, Masatsugu Ueda, et al. Analyzing and mitigating the impact
of manufacturing variability in power-constrained supercomputing. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 78. ACM, 2015.

[9] Intel. Intel Xeon Processor E5 v2 and E7 v2 Product Families Uncore
Performance Monitoring Reference Manual, February 2014.

[10] Intel. Intel Xeon Processor E5 v2 Product Family Datasheel Volume
Two: Registers, March 2014.

[11] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
April 2015.

[12] Intel. Intel Xeon Processor E5-1600/2400/2600/4600 v3 Product Fami-
lies Datasheet Volume 2: Registers, June 2015.

[13] PAPI. Performance Application Programming Interface Version 5.4.3,
2016. http://icl.cs.utk.edu/papi/.

[14] Xiaogang Zhao, Tao Peng, Xiao Qin, Qiping Hu, Ling Ding, and Zhijun
Fang. Feedback control scheduling in energy-efficient and thermal-
aware data centers. Systems, Man, and Cybernetics: Systems, IEEE
Transactions on, 46(1):48–60, 2016.


